Angélica Pachón

University of Torino Italy

Berlin Mathematical School 21 August - 1 September 2017



#### Motivation

Preferential attachment random graphs

#### 2 Preferential attachment and birth processes

- The method of embedding
- The method of weak convergence

#### 3 A modified Preferential Attachment model

• The method of recursive formulae and concentration inequalities



### Motivation



Figure: A human brain networks



Figure: Internet Traffic Map

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

- Motivation

Preferential attachment random graphs

### Preferential attachment random graphs. Motivation

 Not all things we measure are peaked around a typical value. A classic example of this type of behavior is the sizes of towns and cities



Figure: Left: histogram of the populations of all US cities with population of 10 000 or more. Right: histogram of the same data, but plotted on logarithmic scales.

- Motivation

Preferential attachment random graphs

#### What does it mean?

Let p(x)dx be the fraction of cities with population between x and x + dx. If the histogram is a straight line on log-log scales, then

$$\ln p(x) = -\alpha \ln x + c,$$

where  $\alpha$  and c are constants.

Taking the exponential of both sides, this is equivalent to:

$$p(x)=Cx^{-\alpha},$$

イロト 不得 トイヨト イヨト ヨー ろくで

with  $C = e^{c}$ .

Distributions of this form are said to follow a power law.

- Motivation

Preferential attachment random graphs

### Preferential attachment random graphs 1

#### Barabási-Albert model (BA)

- Start with an initial connected graph of  $m_0$  vertices
- At every step we add a new vertex with  $m \leq m_0$  edges
- The probability that a new vertex  $v_{n+1}$  will be connected to a vertex  $v_j, 1 \le j \le n+1$ , is proportional to the degree of  $v_j$

イロト 不得 トイヨト イヨト ヨー ろくで

- Usually *m* edges are drawn independently or one by one.
- When m = 1 the random graph is a random tree.

- Motivation

Preferential attachment random graphs

### Preferential attachment random graphs 2

Formally, let  $m \in \mathbb{Z}^+$ ,  $n \in \mathbb{Z}^+ \cup \{0\}$ , and let us define the process  $(G_m^t)_{t \ge 1}$ , with  $G_m^1$  the graph with a single vertex, without loops. Then,

- **()** at time t = n(m+1) + 1 add a new vertex  $v_{n+1}$ ,
- Of for i = 2,..., m+1 at each time t = n(m+1) + i add a direct edge from v<sub>n+1</sub> to v<sub>j</sub>, j = 1,..., n+1, with

$$\mathbb{P}(\mathbf{v}_{n+1} \longrightarrow \mathbf{v}_j) = \begin{cases} \frac{d(\mathbf{v}_j, t-1)}{T_d(t-1)}, & \mathbf{v}_j \neq \mathbf{v}_{n+1} \\ \frac{d(\mathbf{v}_j, t-1)+1}{T_d(t-1)}, & \mathbf{v}_j = \mathbf{v}_{n+1}, \end{cases}$$
(1)

(日) (日) (日) (日) (日) (日) (日) (日)

where  $d(v_j, t)$  denotes the degree of  $v_j$  at time t and  $T_d(t) = \sum_{k=1}^{n+1} d(v_k, t)$ .

- Motivation

Preferential attachment random graphs

### Preferential attachment

Let  $N_{k,t}^{BA}$  be the number of vertices with **degree** equal to k in the BA model, and note that at time t = n(m + 1),  $G_m^t$  has exactly n vertices.

#### Theorem (Bollobás, Riordan, Spencer, Tusnády)

Let  $m \ge 1$  and  $\epsilon > 0$  be fixed, and put  $\alpha_{m,k} = \frac{2m(m+1)}{k(k+1)(k+2)}$ . Then whp we have

$$(1-\epsilon)\alpha_{m,k} \leq \frac{N_{m+k,n(m+1)}^{DA}}{n} \leq (1+\epsilon)\alpha_{m,k},$$

for every k in the range  $m \le k \le n^{1/15}$ .

Preferential attachment and birth processes

### A continuous time birth process: The Yule process

• Let  $\{N_{\lambda}(T) : T \ge 0\}$  be a pure birth process with  $N_{\lambda}(0) = b$ ,  $b \ge 1$ , and

$$\mathbb{P}(N_{\lambda}(T+h) = k + \ell \mid N_{\lambda}(T) = k) = \begin{cases} k\lambda h + o(h), & \ell = 1, \\ o(h), & \ell > 1, \\ 1 - k\lambda h + o(h), & \ell = 0. \end{cases}$$
(2)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Preferential attachment and birth processes

## The Yule model $\{Y_{\lambda,\beta}^{a,b}(T)\}_{T\geq 0}$

- It makes use of **two related Yule processes**,  $\{N_{\lambda}(T)\}_{T\geq 0}$  and  $\{N_{\beta}(T)\}_{T\geq 0}$ , of rates  $\lambda > 0$  and  $\beta > 0$ , respectively, and with initial conditions  $N_{\lambda}(0) = a$  and  $N_{\beta}(0) = b$ .
- The **relation** between them is such that when a new individual appears in the Yule process with parameter  $\beta$ , a new Yule process with parameter  $\lambda$  starts.

Preferential attachment and birth processes

└─ The method of embedding

### The method of embedding when m = 1

- Let {Z<sub>i</sub>(T) : T ≥ 0}<sub>i≥1</sub> be independent and identically distributed copies of {N<sub>1</sub>(T) : T ≥ 0}, a Yule process {N<sub>λ</sub>(T)}<sub>T≥0</sub>, λ = 1.
- Let  $\{\tau_n\}_{n\geq 0}$  be a convenient sequence of random times, with  $\tau_0 = 0$ , and so that  $\{Z_1(T)\}_{T\geq \tau_0}$ ,  $\{Z_2(T)\}_{T\geq \tau_0}$  and  $\{Z_i(T-\tau_{i-2})\}_{T\geq \tau_{i-2}}$ ,  $i\geq 2$ .

Let

$$\widetilde{d}(v_i, n) \equiv Z_i(\tau_n - \tau_{i-2}), 1 \le i \le n+2$$
  
and  $\widetilde{D}_n \equiv \{\widetilde{d}(v_i, n), 1 \le i \le n+2\}, n \ge 0.$ 

Preferential attachment and birth processes

└─ The method of embedding

### The method of embedding when m = 1

#### Theorem (Athreya (2007))

Let  $\{Z_i(T) : T \ge 0\}_{i\ge 1}$  and  $\{\tau_n\}_{n\ge 0}$  be as above. Let

$$\widetilde{d}(v_i, n) \equiv Z_i(\tau_n - \tau_{i-2}), 1 \leq i \leq n+2$$

and  $\tilde{D}_n \equiv {\tilde{d}(v_i, n), 1 \le i \le n+2}, n \ge 0$ . Consider the degree vector sequence for the random graph sequence  ${G_n}_{n\ge 0}$ ,  $D_n = {d(v_i, n), 1 \le i \le n+2}$ . Then the two sequences of random vectors  ${D_n : n \ge 0}$  and  ${\tilde{D}_n : n \ge 0}$  have the same distribution.

Preferential attachment and birth processes

└─ The method of embedding

# Through this technique of embedding a "discrete" sequence of graphs in a "continuous time" branching process

- K.B. Athreya (2006-2008) studied the empirical degree distribution for the linear, sub-linear and super-linear Preferential attachment model.
- S. Bhamidi (2007) used the results of Aldous (1991) of assymptotic "Fringe distribution" for general families of random trees to study more properties:
  - emprirical degree distribution
  - the size of the subtree rooted at the *k*th vertex to the born.
  - degree of the root
  - maximum degree
  - the hight of the tree
- S. Dereich, M. Ortgiese (2014): preferential attachment models with fitness

イロト 不得 トイヨト イヨト ヨー ろくで

Preferential attachment and birth processes

└─ The method of embedding

Through this technique of embedding a "discrete" sequence of graphs in a "continuous time" branching process

- K.B. Athreya (2006-2008) studied the empirical degree distribution for the linear, sub-linear and super-linear Preferential attachment model.
- S. Bhamidi (2007) used the results of Aldous (1991) of assymptotic "Fringe distribution" for general families of random trees to study more properties:
  - emprirical degree distribution
  - the size of the subtree rooted at the *k*th vertex to the born.
  - degree of the root
  - maximum degree
  - the hight of the tree
- S. Dereich, M. Ortgiese (2014): preferential attachment models with fitness

Preferential attachment and birth processes

└─ The method of embedding

Through this technique of embedding a "discrete" sequence of graphs in a "continuous time" branching process

- K.B. Athreya (2006-2008) studied the empirical degree distribution for the linear, sub-linear and super-linear Preferential attachment model.
- S. Bhamidi (2007) used the results of Aldous (1991) of assymptotic "Fringe distribution" for general families of random trees to study more properties:
  - emprirical degree distribution
  - the size of the subtree rooted at the *k*th vertex to the born.
  - degree of the root
  - maximum degree
  - the hight of the tree
- S. Dereich, M. Ortgiese (2014): preferential attachment models with fitness

Preferential attachment and birth processes

└─ The method of embedding

Through this technique of embedding a "discrete" sequence of graphs in a "continuous time" branching process

- K.B. Athreya (2006-2008) studied the empirical degree distribution for the linear, sub-linear and super-linear Preferential attachment model.
- S. Bhamidi (2007) used the results of Aldous (1991) of assymptotic "Fringe distribution" for general families of random trees to study more properties:
  - emprirical degree distribution
  - the size of the subtree rooted at the *k*th vertex to the born.
  - degree of the root
  - maximum degree
  - the hight of the tree
- S. Dereich, M. Ortgiese (2014): preferential attachment models with fitness

Preferential attachment and birth processes

└─ The method of weak convergence

### The method of weak convergence

- Consider a Yule model  $\{Y_{1/2,1}^{m,1}(T)\}_{T\geq 0}$ , that is, the initial conditions for the two Yule processes are  $N_{\lambda}(0) = m$ , and  $N_{\beta}(0) = 1$ ,  $\lambda = 1/2$ ,  $\beta = 1$ .
- Let  $\mathcal{N}_{\mathcal{T}}^{m,1}$  be the size of a individual from  $N_{\beta}(\mathcal{T})$  chosen uniformly at random at time  $\mathcal{T}$  in  $\{Y_{1/2,1}^{m,1}(\mathcal{T})\}_{\mathcal{T}\geq 0}$
- Let deg(v, n) denotes the degree of v at time t = n(m+1) (i.e., when there are exactly n vertices) in the **Barabási-Albert model**.

- Preferential attachment and birth processes
  - └─ The method of weak convergence

### Weak convergence theorem

#### Theorem (P., Polito, Sacerdote (2016))

For every  $i, j \in \mathbb{N}$ ,  $j \ge i$ , and  $w_1 < w_2 < \cdots < w_h \in \mathbb{R}^+$ , there exists a convenient non-decreasing sequence  $z_1, \ldots, z_h \in \mathbb{N}$  of stopping times, so that

$$\lim_{i \to \infty} \mathbb{P}[deg(v_j, j + z_1) = k_1, \dots, deg(v_j, j + z_b) = k_h]$$
(3)  
=  $\mathbb{P}[N_{1/2}(\ln(1 + w_1)) = k_1, \dots, N_{1/2}(\ln(1 + w_h) = k_h],$ 

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where  $N_{1/2}$  is a Yule process with  $N_{1/2}(0) = m$  and  $m \le k_1 \le \cdots \le k_b$ .

Preferential attachment and birth processes

└─ The method of weak convergence

### Weak convergence theorem

Let  $d^{U}(V_t)$  indicates the degree of a vertex chosen uniformly at random at time t in the BA model, and  $N_{k,t}^{BA}$  be the number of vertices with **degree** equal to k in the BA model.

#### Theorem (P., Polito, Sacerdote (2016))

Consider a Yule model  $\{Y_{1/2,1}^{m,1}(T)\}_{T\geq 0}$ . Then for t = n(m+1) we have

$$p_k := \lim_{n \to \infty} \mathbb{P}(d^U(V_t) = k) = \lim_{T \to \infty} \mathbb{P}(\mathcal{N}_T^{m,1} = k).$$
(4)

where  $\mathcal{N}_T^{m,1}$  is the size of a individual from  $N_1(T)$  chosen uniformly at random at time T in  $\{Y_{1/2,1}^{m,1}(T)\}_{T\geq 0}$ . Furthermore as  $n \to \infty$ ,

$$\frac{N_{k,t}^{BA}}{n} \to p_k$$

in probability.

Preferential attachment and birth processes

└─ The method of weak convergence

#### Proposition

Consider a Yule model  $\{Y_{1/2,1}^{m,1}(\mathcal{T})\}_{\mathcal{T}\geq 0}$  and  $\mathcal{N}_{\mathcal{T}}^{m,1}$  as above. Then,

$$p_k = m(m+1)\frac{\Gamma(k)\Gamma(3)}{\Gamma(k+3)},$$
(5)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 | のへで

where  $k \geq m$ .

Preferential attachment and birth processes

└─ The method of weak convergence

### Some heuristics I

We interpret the BA model identifying two different processes in discrete time, one for the appearance of directed edges of a fixed vertex and the other for the creation of new vertices.

• For the first one, note that in the BA model, at time when there are *n* vertices, we have *mn* directed edges. If *d*(*v*, *n*) denotes the degree of an existing vertex *v* at time when there are *n* vertices in the BA model, then by the preferential attachment rule,

$$\mathbb{P}[d(v,n+1)=k+1\mid d(v,n)=k]\approx \frac{km}{2mn}=\frac{k}{2n}.$$

From this we can see that the distribution of the time interval between the instants at which d(v, n) changes from k to k + 1 is approximately Geometric with parameter k/(2n).

└─ The method of weak convergence

### Some heuristics I

We interpret the BA model identifying two different processes in discrete time, one for the appearance of directed edges of a fixed vertex and the other for the creation of new vertices.

• For the first one, note that in the BA model, at time when there are *n* vertices, we have *mn* directed edges. If *d*(*v*, *n*) denotes the degree of an existing vertex *v* at time when there are *n* vertices in the BA model, then by the preferential attachment rule,

$$\mathbb{P}[d(v, n+1) = k+1 \mid d(v, n) = k] \approx \frac{km}{2mn} = \frac{k}{2n}.$$

From this we can see that the distribution of the time interval between the instants at which d(v, n) changes from k to k + 1 is approximately Geometric with parameter k/(2n).

くロット (雪) (目) (日) (日) (日)

└─ The method of weak convergence

### Some heuristics I

We interpret the BA model identifying two different processes in discrete time, one for the appearance of directed edges of a fixed vertex and the other for the creation of new vertices.

• For the first one, note that in the BA model, at time when there are *n* vertices, we have *mn* directed edges. If *d*(*v*, *n*) denotes the degree of an existing vertex *v* at time when there are *n* vertices in the BA model, then by the preferential attachment rule,

$$\mathbb{P}[d(v, n+1) = k+1 \mid d(v, n) = k] \approx \frac{km}{2mn} = \frac{k}{2n}.$$

From this we can see that the distribution of the time interval between the instants at which d(v, n) changes from k to k + 1 is approximately Geometric with parameter k/(2n).

Preferential attachment and birth processes

└─ The method of weak convergence

### Some heuristics II

- For the second one, we see the deterministic process of appearance of vertices in the BA model in a different manner. To do that we wait up to see *n* vertices in the BA model, n > i, i > 1 and construct a set of *i* dependent but identically distributed birth processes (in discrete time). We call this the planted model. Then we consider the following experiment.
  - Choose one of the *i* birth processes with probability proportional to its number of vertices it has.
  - Ochoose a vertex uniformly at random, among the vertices belonging to the selected birth process.
- We prove that the planted model together with the previous experiment induce the uniform distribution for selecting a vertex on the set of [n] vertices in the BA model. Furthermore, they induce the uniform distribution for choosing a birth process on the set of *i* birth processes of the planted model.

Preferential attachment and birth processes

└─ The method of weak convergence

### Some heuristics II

- For the second one, we see the deterministic process of appearance of vertices in the BA model in a different manner. To do that we wait up to see *n* vertices in the BA model, n > i, i > 1 and construct a set of *i* dependent but identically distributed birth processes (in discrete time). We call this the planted model. Then we consider the following experiment.
  - Octoose one of the *i* birth processes with probability proportional to its number of vertices it has.
  - 2 Choose a vertex uniformly at random, among the vertices belonging to the selected birth process.
- We prove that the planted model together with the previous experiment induce the uniform distribution for selecting a vertex on the set of [n] vertices in the BA model. Furthermore, they induce the uniform distribution for choosing a birth process on the set of *i* birth processes of the planted model.

Preferential attachment and birth processes

└─ The method of weak convergence

### Some heuristics II

- For the second one, we see the deterministic process of appearance of vertices in the BA model in a different manner. To do that we wait up to see *n* vertices in the BA model, *n* > *i*, *i* > 1 and construct a set of *i* dependent but identically distributed birth processes (in discrete time). We call this the planted model. Then we consider the following experiment.
  - Octoose one of the *i* birth processes with probability proportional to its number of vertices it has.
  - Ochoose a vertex uniformly at random, among the vertices belonging to the selected birth process.
- We prove that the planted model together with the previous experiment induce the uniform distribution for selecting a vertex on the set of [n] vertices in the BA model. Furthermore, they induce the uniform distribution for choosing a birth process on the set of *i* birth processes of the planted model.

A modified Preferential Attachment model

### The Uniform-Preferential attachment model (UPA)

We propose a **generalization of the Barabási-Albert model** which takes into account two different attachment rules for new nodes of the network. We investigate the degree distribution.

#### Motivation

- Consider a website where registered members can submit content, such as text posts.
- Furthermore, registered users can vote previous posts to determine their position on the site's pages.
- Hence, the submissions with the most positive votes appear on the front page, together with a fixed number of the most recent posts (see **www.reddit.com**).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

This is a network in which nodes are the posts and edges are votes.

A modified Preferential Attachment model

The attachment rules:

- Imagine that when a user submits a new post, it also votes on some other previous submissions.
- It is reasonable to assume that the user tends to select and vote either on **the most recent posts** or **the most popular posts**.
- Hence, the user votes the posts according to two different rules:
  - with uniform probability if the user decides to select a post recently published, and

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• with probability proportional to the number of votes, otherwise.

A modified Preferential Attachment model

The attachment rules:

- Imagine that when a user submits a new post, it also votes on some other previous submissions.
- It is reasonable to assume that the user tends to select and vote either on **the most recent posts** or **the most popular posts**.
- Hence, the user votes the posts according to two different rules:
  - with uniform probability if the user decides to select a post recently published, and

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• with probability proportional to the number of votes, otherwise.

### The UPA model

Formally, suppose that every new node  $v_{t+1}$  selects a neighbor either within a limited window of nodes (the  $l \in \mathbb{N}$  youngest nodes of the network), or among all nodes  $(v_0, \ldots, v_t)$  as follows: Let  $0 \le p \le 1$  and  $l \ge 1$ . Then,

- (a) At the starting period t = l,  $l \in \mathbb{N}$ , the initial graph  $G^{l}$  has l + 1 nodes  $(v_0, v_1, \dots, v_l)$ , where every node  $v_j$ ,  $1 \le j \le l$ , is connected to  $v_0$ .
- (b) Given G<sup>t</sup>, at time t + 1 add a new node v<sub>t+1</sub> together with an outgoing edge. Such edge links v<sub>t+1</sub> with an existing node chosen either within a window, or among all nodes present in the network at time t, as follows:
  - with probability p,  $v_{t+1}$  chooses its neighbour in the set  $\{v_{t-l+1}, ..., v_t\}$ , and each node within this window has probability  $\frac{1}{l}$  of being chosen.
  - with probability 1 p, the neighbour of  $v_{t+1}$  is chosen from the set  $\{v_0, ..., v_t\}$ , and each node  $v_j, j = 0, ..., t$ , has probability  $\frac{\deg(v_j)}{2t}$  of being chosen.

### The UPA model

Formally, suppose that every new node  $v_{t+1}$  selects a neighbor either within a limited window of nodes (the  $l \in \mathbb{N}$  youngest nodes of the network), or among all nodes  $(v_0, \ldots, v_t)$  as follows: Let  $0 \le p \le 1$  and  $l \ge 1$ . Then,

- (a) At the starting period t = l,  $l \in \mathbb{N}$ , the initial graph G' has l + 1 nodes  $(v_0, v_1, \dots, v_l)$ , where every node  $v_j$ ,  $1 \le j \le l$ , is connected to  $v_0$ .
- (b) Given G<sup>t</sup>, at time t + 1 add a new node v<sub>t+1</sub> together with an outgoing edge. Such edge links v<sub>t+1</sub> with an existing node chosen either within a window, or among all nodes present in the network at time t, as follows:
  - with probability p,  $v_{t+1}$  chooses its neighbour in the set  $\{v_{t-l+1}, ..., v_t\}$ , and each node within this window has probability  $\frac{1}{l}$  of being chosen.
  - with probability 1 p, the neighbour of  $v_{t+1}$  is chosen from the set  $\{v_0, ..., v_t\}$ , and each node  $v_j, j = 0, ..., t$ , has probability  $\frac{\deg(v_j)}{2t}$  of being chosen.

### The UPA model

Formally, suppose that every new node  $v_{t+1}$  selects a neighbor either within a limited window of nodes (the  $l \in \mathbb{N}$  youngest nodes of the network), or among all nodes  $(v_0, \ldots, v_t)$  as follows: Let  $0 \le p \le 1$  and  $l \geq 1$ . Then,

- (a) At the starting period  $t = l, l \in \mathbb{N}$ , the initial graph G' has l + 1nodes  $(v_0, v_1, \dots, v_l)$ , where every node  $v_i, 1 \le j \le l$ , is connected to  $V_0$ .
- (b) Given  $G^t$ , at time t+1 add a new node  $v_{t+1}$  together with an outgoing edge. Such edge links  $v_{t+1}$  with an existing node chosen either within a window, or among all nodes present in the network at time t. as follows:
  - with probability p,  $v_{t+1}$  chooses its neighbour in the set  $\{v_{t-l+1}, ..., v_t\}$ , and each node within this window has probability  $\frac{1}{l}$ of being chosen.
  - with probability 1 p, the neighbour of  $v_{t+1}$  is chosen from the set  $\{v_0, ..., v_t\}$ , and each node  $v_j, j = 0, ..., t$ , has probability  $\frac{\deg(v_j)}{2t}$  of being chosen.

A modified Preferential Attachment model

Dash The method of recursive formulae and concentration inequalities

### Asymptotic degree distribution in the UPA model

#### Theorem

Let N(k, t) denotes the number of nodes in the network with degree k at time t. Then,

$$\frac{N(k,t)}{t} \to P(k) \tag{6}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

in probability as  $t \to \infty$ , where for l = 1 it holds:

$$P(k) = \begin{cases} \frac{2(1-p)}{3-p} & \text{if } k = 1\\ \frac{(1-p)^2}{(2-p)(3-p)} + \frac{p}{2-p} & \text{if } k = 2\\ \left(\frac{2}{1-p} + 2\right) \left(\frac{2}{1-p} + 1\right) B\left(k, 1 + \frac{2}{1-p}\right) P(2) & \text{if } k > 2, \end{cases}$$
(7)

where B(x, y) is the Beta function,

A modified Preferential Attachment model

- The method of recursive formulae and concentration inequalities

### Asymptotic degree distribution in the UPA model

#### Theorem

Let N(k, t) denotes the number of nodes in the network with degree k at time t. Then,

$$\frac{\mathsf{V}(k,t)}{t} \to \mathsf{P}(k) \tag{6}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

in probability as  $t \to \infty$ , where for l = 1 it holds:

$$P(k) = \begin{cases} \frac{2(1-p)}{3-p} & \text{if } k = 1\\ \frac{(1-p)^2}{(2-p)(3-p)} + \frac{p}{2-p} & \text{if } k = 2\\ \left(\frac{2}{1-p} + 2\right) \left(\frac{2}{1-p} + 1\right) B\left(k, 1 + \frac{2}{1-p}\right) P(2) & \text{if } k > 2, \end{cases}$$
(7)

where B(x, y) is the Beta function,

A modified Preferential Attachment model

L The method of recursive formulae and concentration inequalities

while for l > 1 we have:

$$P(k) = \begin{cases} \frac{2}{(3-p)} \left(1 - \frac{p}{l}\right)^{l} & \text{ik } k = 1\\ \frac{2}{2+k(1-p)} \left(\frac{p}{l}(H_{k-1} - H_{k}) + \frac{(1-p)(k-1)}{2}P(k-1)\right) & \text{if } k = 2, \dots, l+1\\ \frac{B(k,l+2+\frac{2}{1-p})}{B(l+1,k+1+\frac{2}{1-p})}P(l+1) & \text{if } k > l+1, \end{cases}$$

where

$$H_{k} = \begin{cases} \left(\frac{p}{l}\right)^{k-1} \sum_{m=1}^{l-(k-1)} {l-m \choose l-m-(k-1)} \left(1-\frac{p}{l}\right)^{l-m-(k-1)} & \text{if } k = 1, \dots, l. \\ 0 & \text{if } k > l. \end{cases}$$
(9)

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

A modified Preferential Attachment model

L The method of recursive formulae and concentration inequalities

while for l > 1 we have:

$$P(k) = \begin{cases} \frac{2}{(3-p)} \left(1 - \frac{p}{l}\right)^{l} & \text{ik } k = 1\\ \frac{2}{2+k(1-p)} \left(\frac{p}{l}(H_{k-1} - H_{k}) + \frac{(1-p)(k-1)}{2}P(k-1)\right) & \text{if } k = 2, \dots, l+1\\ \frac{B(k,l+2+\frac{2}{1-p})}{B(l+1,k+1+\frac{2}{1-p})}P(l+1) & \text{if } k > l+1, \end{cases}$$

where

$$H_{k} = \begin{cases} \left(\frac{p}{l}\right)^{k-1} \sum_{m=1}^{l-(k-1)} {l-m \choose l-m-(k-1)} \left(1-\frac{p}{l}\right)^{l-m-(k-1)} & \text{if } k = 1, \dots, l. \\ 0 & \text{if } k > l. \end{cases}$$
(9)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

- A modified Preferential Attachment model
  - L The method of recursive formulae and concentration inequalities

#### Corollary

As 
$$k \to \infty$$
, for  $l = 1$ 

$$\frac{N(k,t)}{t} \sim C_p \Big[ k^{-\left(1+\frac{2}{1-p}\right)} - \frac{3-p}{(1-p)^2} k^{-\left(2+\frac{2}{1-p}\right)} \Big], \tag{10}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

where  $C_p = \Gamma(1 + 2/(1-p))(2/(1-p) + 2)(2/(1-p) + 1)P(2)$ , and for l > 1,

$$\frac{N(k,t)}{t} \sim C_{p,l} \Big[ k^{-\left(1+\frac{2}{1-p}\right)} - \frac{3-p}{(1-p)^2} k^{-\left(2+\frac{2}{1-p}\right)} \Big], \tag{11}$$
  
where  $C_{p,l} = \Gamma(l+2+2/(1-p)) \big(\Gamma(l+1)\big)^{-1} P(l+1).$ 

- A modified Preferential Attachment model
  - Dash The method of recursive formulae and concentration inequalities

### Ideas of the proof

To prove the previos theorem we pursue the following steps:

- (1) we determine recursively  $\mathbb{E}[N(k, t)], k = 1, 2, ...;$
- (2) we prove the existence of  $P(k) := \lim_{t\to\infty} \mathbb{E}[N(t,k)]/t$ ,
- (3) we determine an explicit expression for P(k),
- (4) we use the Azuma-Hoeffding Inequality to prove convergence in probability of N(k, t)/t to P(k).

Future projects

### Future projects

- On the relation between generalizations of Yule's model and random graphs.
  - To explore variants of random graphs with birth and death mechanism in the creation of new links or vertices; migration effects; attachment rules proportional to given functions, Non-Markov hypotesis and long-range dependence.

▲ロト ▲帰下 ▲ヨト ▲ヨト - ヨー の々ぐ